Overview
The CDM-570A and the CDM-570AL are our next generation satellite modems that provide industry-leading performance and flexibility in a 1 RU package at a very competitive price. With support for VersaFEC-2 high performance LDPC and VersaFEC® low latency LDPC Forward Error Correction (FEC), the revolutionary DoubleTalk® Carrier-in-Carrier bandwidth compression, and optimized transmit filter rolloffs, the CDM-570A and CDM-570AL provide significant bandwidth savings. This combination of advanced technologies enables multi-dimensional optimization, allowing satellite communications users to:

- Minimize operating expenses (OPEX)
- Maximize throughput without using additional transponder resources
- Maximize availability (margin) without using additional transponder resources
- Minimize capital expenses (CAPEX) by allowing a smaller BUC/amplifier and/or antenna
- Or, a combination to meet specific business needs

The modems are available with 70/140 MHz or L-Band IF and EIA-530/-422, V.35, sync EIA-232 and G.703 T1/E1 data interfaces. The CDM-570A/L-IP include a high-performance packet processor for IP-centric applications.

Features
- DoubleTalk Carrier-in-Carrier bandwidth compression
- Carrier-in-Carrier Automatic Power Control (CnC-APC)
- VersaFEC-2 High Performance LDPC
- VersaFEC low latency LDPC
- VersaFEC-2 and VersaFEC Adaptive Coding & Modulation (ACM) for point-to-point IP circuits
- 5%, 10%, 15%, 20%, 25% and 35% Transmit Filter Rolloff
- Data rate range from 2.4 kbps to 10.239 Mbps
- CDM-570A: 50 to 90 or 100 to 180 MHz IF range
- CDM-570AL: 950 to 2250 MHz IF range
- Modulation: BPSK, QPSK, OQPSK, 8PSK/8-QAM/8-ARY, 16-QAM/16-ARY, 32-ARY
- Forward Error Correction (FEC) options include VersaFEC-2, VersaFEC, Turbo Product Code (TPC), Viterbi, Reed-Solomon, and Trellis Coded Modulation (TCM)
- Data Interfaces: EIA-422/530, V.35, G.703 T1/E1, sync EIA-232, 10/100Base-T Ethernet (CDM-570A-IP and CDM-570AL-IP)
- High-performance Packet Processor with 10/100Base-T Ethernet port (CDM-570A-IP and CDM-570AL-IP)
- Vipersat Management System (VMS) integration (CDM-570A-IP and CDM-570AL-IP)
- Header and payload compression ((CDM-570A-IP and CDM-570AL-IP)
- Quality of Service (QoS) (CDM-570A-IP and CDM-570AL-IP)
- Management via SNMP, Web, Telnet or Command Line Interface (CDM-570A-IP and CDM-570AL-IP)
- G.703 clock extension
- Automatic Uplink Power Control (AUPC)
- Embedded Distant-end Monitor and Control (EDMAC/EDMAC2)
- CarrierID using Comtech EF Data’s MetaCarrier® spread spectrum technology
- Redundancy options
- CDM-570A: FSK communications to CSAT-5060 or KST-2000A
- CDM-570AL: 10 MHz reference for BUC, FSK communications and optional BUC power supply
- CDM-570AL: 10 MHz reference and power supply for LNB

Typical Users
- Enterprise
- Offshore & Maritime
- Mobile Network Operators
- Satellite Service Providers
- Internet Service Providers

Common Applications
- Enterprise Networks
- Offshore & Maritime Communications
- Mobile Backhaul
- Communications on-the-Move
- Disaster Recovery & Emergency Communications
- Satellite News Gathering
Doubletalk Carrier-in-Carrier

DoubleTalk Carrier-in-Carrier, based on patented “Adaptive Cancellation” technology, allows transmit and receive carriers of a duplex link to share the same transponder bandwidth. DoubleTalk Carrier-in-Carrier is complementary to all advances in modem technology, including advanced FEC and modulation techniques. As these technologies approach theoretical limits of power and bandwidth efficiencies, DoubleTalk Carrier-in-Carrier utilizing advanced signal processing techniques provides a new dimension in bandwidth efficiency.

Figure 1 shows the typical full-duplex satellite link, where the two carriers are adjacent to each other.

Figure 2 shows the typical DoubleTalk Carrier-in-Carrier operation, where the two carriers are overlapping, thus sharing the same spectrum.

![Figure 1](Image 71x499 to 272x629)

When observed on a spectrum analyzer, only the Composite is visible. Carrier 1 and Carrier 2 are shown in Figure 2 for reference only.

As DoubleTalk Carrier-in-Carrier allows equivalent spectral efficiency using a lower order modulation and/or code rate, it can reduce the power required to close the link thereby reducing CAPEX by allowing a smaller BUC/amplifier and/or antenna. Alternatively, DoubleTalk Carrier-in-Carrier can be used to achieve very high spectral efficiencies E.g., DoubleTalk Carrier-in-Carrier when used with 32-ARY modulation can provide bandwidth efficiency exceeding 8 bps/Hz.

When combined with VersaFEC-2 or VersaFEC and optimized transmit filter rolloffs, DoubleTalk Carrier-in-Carrier provides unprecedented savings in transponder bandwidth and power utilization. This allows for its successful deployment in bandwidth-limited and power-limited scenarios, as well as reduction in earth station BUC/amplifier power requirements.

Carrier-in-Carrier® is a Registered Trademark of Comtech EF Data
DoubleTalk® is a Registered Trademark of Raytheon Applied Signal Technology
VersaFEC® is a Registered Trademark of Comtech EF Data

Carrier-in-Carrier Automatic Power Control (CnC-APC)

The patent-pending Carrier-in-Carrier Automatic Power Control (CnC-APC) mechanism enables modems on both sides of a CnC link to automatically measure and compensate for rain fade while maintaining the Total Composite Power. In addition to automatically compensating for rain fade, CnC-APC also enables the modems to share link margin, i.e. a modem can effectively transfer excess link margin to a distant end modem experiencing fade, thereby further enhancing overall availability.

VersaFEC-2 High Performance LDPC Forward Error Correction

CDM-570A now offers a new high performance LDPC FEC specifically designed to optimize performance at low to mid-tier symbol rates. VersaFEC-2 long-block provides 38 ModCods (BPSK to 32-ARY) with performance generally better than DVB-S2 at significantly lower latency and short-block provides 36 ModCods (BPSK to 32-ARY) with higher coding gain than first generation VersaFEC and similar latency. All higher order constellations are quasi-circular for optimal peak-to-average performance. ACM operation is supported for long block and short block for IP/Ethernet traffic in a point-to-point topology.

VersaFEC Forward Error Correction

VersaFEC is a patent-pending system of LDPC codes designed to provide maximum coding gain while minimizing latency. CDM-570A/L support Constant Coding & Modulation (CCM) mode of operation with serial and G.703 data interfaces. CDM-570A/L-IP also support Adaptive Coding & Modulation (ACM) for IP/Ethernet traffic when operating in point-to-point topology.

The Ultra Low Latency (ULL) codes provide even lower latency compared to standard VersaFEC codes.

Optimized Transmit Filter Rolloffs

CDM-570A/L support 5%, 10%, 15%, 20%, 25% and 35% transmit filter rolloff allowing users to further optimize the link. Carrier-in-Carrier combined with VersaFEC and optimized transmit filter rolloffs can provide 50% or more BW savings compared to legacy modems.

EDMAC & AUPC Operation

The CDM-570A/L-IP has the ability to monitor and control the distant end of a point-to-point satellite link using EDMAC or EDMAC2. User data is framed and bits are added to transfer control, status, and AUPC information.
Management
The modems support SNMP, web-based and command line interfaces for management. The modems can also be configured and monitored from the front panel, or through the remote M&C port. Ten complete RF configurations may be stored in the modem. An event log stores alarm and status information in non-volatile RAM, while the link statistics log stores link performance (Eb/No and AUPC performance) for monitoring and reporting purposes.

G.703 Clock Extension
Mobile networks require precise synchronization of base stations, which is a challenge when using IP backhaul. Most operators are forced to use GPS-based external equipment for site synchronization. CDM-570A/L-IP offers a G.703 clock extension option that propagates a high stability reference from hub to the remote. This process does not require additional bandwidth.

CarrierID
CDM-570A now incorporate a patent-pending carrier identification (CID) technique that uses Comtech EF Data’s MetaCarrier® spread spectrum technology to embed a unique carrier identification sequence for the transmitted carrier to help identify interfering carriers. CDM-570A with MetaCarrier® is used in tandem with the Comtech EF Data’s MCDD-100 MetaCarrier® Detection Device to provide a complete MetaCarrier embedding and decoding solution.

High Performance Packet Processor (CDM-570A/L-IP)
The high-performance Packet Processor enables efficient IP networking and transport over satellite with header compression, payload compression and advance Quality of Service. The advanced QoS combined with header and payload compression ensures the highest quality of service with minimal jitter and latency for real-time traffic, priority treatment of mission critical applications and maximum bandwidth efficiency.

The packet processor supports Routed mode as well as Managed Switch Mode of operation. In managed switch mode, it operates as a layer 2 switch with VLAN support, enabling seamless integration with existing infrastructure while providing full optimization including header compression and payload compression and advanced QoS.

The CDM-570A/L-IP supports a wide range of applications and network topologies.

Header Compression Option
The packet processor incorporates industry-leading header compression for IP/Ethernet traffic. In Routed mode, header compression can be enabled on a per route basis and can reduce the typical 40 byte IP/UDP/RTP header to an average of 2 bytes. For TCP/IP, the 40 byte header is reduced to an average of 4 bytes. In Managed switch mode, header compression also compresses the Ethernet header. So a 58 byte Ethernet header with VLAN and IP/UDP/RTP header can be compressed to as little as 2 bytes.

For applications such as VoIP, header compression can provide bandwidth savings exceeding 60%. E.g. 8 kbps G.729 voice transported in an IP/UDP/RTP datagram typically requires 24 kbps in a routed network or approximately 32.4 kbps in a switched network including VLAN header and FCS. With header compression, the same voice call needs approx 9 kbps (before HDLC encapsulation) – a savings of over 60% in a routed network or over 70% in a switched network. Bandwidth requirement for typical Web/HTTP traffic is also reduced with TCP/IP header compression.

Payload Compression Option
Implemented in the hardware for maximum throughput and efficiency, payload compression can typically reduce the required satellite bandwidth by 20-30%.

Quality of Service (QoS) Option
Today’s networks have to support a wide range of applications with diverse requirements. The packet processor incorporates advanced QoS mechanism to ensure the highest service quality with minimal jitter and latency for real-time traffic, priority treatment of mission critical applications while maximizing bandwidth utilization. Four different QoS modes are available:

- DiffServ – Industry-standard method of providing QoS enabling seamless co-existence in networks that implement DiffServ.
- Max/Priority – Provides eight levels of traffic prioritization with the ability to limit maximum traffic per priority class
- Min/Max – Provides a Committed Information Rate (CIR) to each user defined class of traffic with the ability to allow a higher burstable rate depending on availability
- VLAN Priority/Max – Available in Managed switch mode when using VLANs. Uses 3-bit 802.1p VLAN priority with ability to set a maximum data rate per priority

Packet processor includes a powerful classifier capable of classifying packets based on Application/Protocol, Source IP Address/Subnet, Destination IP Address/Subnet, Source Port / Range and Destination Port / Range.
Vipersat Management System

- Dynamic SCPC carrier allocation & true bandwidth-on-demand
- User-defined policies for upstream carrier switching
- Star and dynamic mesh capabilities using single hop-on-demand
- Guaranteed bandwidth capability

VMS Network & Bandwidth Management

A Vipersat-powered network integrates these advanced modems with a powerful network management tool, the Vipersat Management System (VMS). In addition to the traditional monitoring and control of the CDM-570A/L-IP modems and the demodulators, the VMS allows these devices to share bandwidth, and when needed, switch automatically to a dedicated SCPC channel. In a Vipersat-powered network, the CDM-570A/L-IP modem takes advantage of its fast acquisition demodulation to allow it to operate in a shared mode. Inbound transmissions (from remote to hub) can be switched from a shared Selective Time Division Multiple Access (STDMA) mode to a dedicated Single Carrier Per Channel (SCPC) connection via a variety of user-defined policies or triggers. This enables the network to more effectively handle real-time connection-oriented applications and reduces both latency and network congestion. Through VMS, dynamic point-to-point mesh connections can also be established between remotes.

Upstream Switching

Through protocol classification in the remote terminals, the modem initiates automatic switching. VMS establishes dSCPC bandwidth based on policies that can be individually enabled on a per-remote basis, or globally enabled. Policies can be configured for a variety of applications such as VoIP, video (VTC), or based on a load, or via a schedule, Type of Service (ToS), or QoS rules such as IP port or IP address and protocol type. Operators are able to set minimum and maximum data rates for each remote as well as excess data rates for an initial upstream switch.

Vipersat Operation Mode

Vipersat operation is enabled via a FAST feature code. Networks can easily start off in point-to-point or point-to-multipoint configurations. As the network grows and users wish to take advantage of the bandwidth-on-demand savings by implementing a Vipersat network, modems can easily be upgraded to Vipersat mode.

FAST Feature Enhancements

The FAST codes make it easy to upgrade the modem capability in the field. New features can be added on site, using FAST access codes purchased from Comtech EF Data that can be entered via the front panel.

Specifications

<table>
<thead>
<tr>
<th>Data Rate Range</th>
<th>Symbol Rate</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>(See user manual for details)</td>
<td>4.8 kps to 3.0 Mps (subject to data rate range, modulation and FEC) [Please see user manual for details on supported symbol rates for different modulation and FEC]</td>
<td>CDM-570A: 50 to 90 or 100 to 180 MHz, 100 Hz resolution CDM-570AL: 490 to 2250 MHz, 100 Hz resolution</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Interfaces</th>
<th>14.144 Mps to 10.239 Mbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIA-422/530 DCE, V.35 DCE, Sync EIA-232, G.703 T1 balanced, G.703 E1 balanced or unbalanced, 10/100Base-T Ethernet (option)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulation & FEC Options</th>
<th>Data Rate Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>VersaFEC-2 (Long Block)</td>
<td>18.115 kbps to 1.468 Mbps (Minimum 37 kbps)</td>
</tr>
<tr>
<td>BPSK 0.488</td>
<td>36.230 kbps to 4.397 Mbps (Minimum 37 kbps)</td>
</tr>
<tr>
<td>QPSK 0.493</td>
<td>125.081 kbps to 6.596 Mbps (Minimum 80 kbps)</td>
</tr>
<tr>
<td>QPSK 0.493</td>
<td>234.527 kbps to 9.381 Mbps (Minimum 100 kbps)</td>
</tr>
<tr>
<td>8-ARY 0.521</td>
<td>824.511 kbps to 10.239 Mbps (Minimum 250 kbps)</td>
</tr>
<tr>
<td>8-ARY 0.521</td>
<td>18.115 kbps to 0.489 Mbps (Minimum 37 kbps)</td>
</tr>
<tr>
<td>8-ARY 0.521</td>
<td>36.230 kbps to 1.465 Mbps (Minimum 37 kbps)</td>
</tr>
<tr>
<td>QPSK 0.493</td>
<td>125.081 kbps to 2 Mbps (Minimum 80 kbps)</td>
</tr>
<tr>
<td>QPSK 0.493</td>
<td>234.527 kbps to 2 Mbps (Minimum 100 kbps)</td>
</tr>
<tr>
<td>QPSK 0.493</td>
<td>824.511 kbps to 2 Mbps (Minimum 250 kbps)</td>
</tr>
<tr>
<td>VersaFEC-2 (Short Block)</td>
<td>2.4 kbps to 1.462 Mbps</td>
</tr>
<tr>
<td>BPSK Rate 0.489</td>
<td>36.230 kbps to 2.818 Mbps</td>
</tr>
<tr>
<td>QPSK Rate 0.493</td>
<td>125.081 kbps to 5.359 Mbps</td>
</tr>
<tr>
<td>QPSK Rate 0.493</td>
<td>234.527 kbps to 2 Mbps (Minimum 100 kbps)</td>
</tr>
<tr>
<td>8-ARY Rate 0.521</td>
<td>824.511 kbps to 2 Mbps (Minimum 250 kbps)</td>
</tr>
<tr>
<td>8-ARY Rate 0.521</td>
<td>18.115 kbps to 0.489 Mbps (Minimum 37 kbps)</td>
</tr>
<tr>
<td>8-ARY Rate 0.521</td>
<td>36.230 kbps to 1.465 Mbps (Minimum 37 kbps)</td>
</tr>
<tr>
<td>QPSK 0.493</td>
<td>125.081 kbps to 2 Mbps (Minimum 80 kbps)</td>
</tr>
<tr>
<td>QPSK 0.493</td>
<td>234.527 kbps to 2 Mbps (Minimum 100 kbps)</td>
</tr>
<tr>
<td>QPSK 0.493</td>
<td>824.511 kbps to 2 Mbps (Minimum 250 kbps)</td>
</tr>
<tr>
<td>VersaFEC</td>
<td>2.4 kbps to 1.462 Mbps</td>
</tr>
<tr>
<td>BPSK 0.488</td>
<td>36.230 kbps to 2.818 Mbps</td>
</tr>
<tr>
<td>QPSK 0.493</td>
<td>125.081 kbps to 5.359 Mbps</td>
</tr>
<tr>
<td>QPSK 0.493</td>
<td>234.527 kbps to 2 Mbps (Minimum 100 kbps)</td>
</tr>
<tr>
<td>8-ARY Rate 0.521</td>
<td>824.511 kbps to 2 Mbps (Minimum 250 kbps)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Rates</th>
<th>Data Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 kbps to 1.462 Mbps</td>
<td>11.3 kbps to 7.021 Mbps</td>
</tr>
<tr>
<td>12.4 kbps to 7.726 Mbps</td>
<td>16-QAM 0.644 (ECCM)</td>
</tr>
<tr>
<td>14.1 kbps to 8.776 Mbps</td>
<td>16-QAM 0.780</td>
</tr>
<tr>
<td>15.0 kbps to 9.361 Mbps</td>
<td>16-QAM 0.829</td>
</tr>
<tr>
<td>16.0 kbps to 9.946 Mbps</td>
<td>16-QAM 0.853</td>
</tr>
<tr>
<td>16.4 kbps to 10.239 Mbps</td>
<td>VersaFEC Ultra Low Latency (ULL) Codes</td>
</tr>
<tr>
<td>BPSK 0.493 (ULL)</td>
<td>2.4 kbps to 1.479 Mbps</td>
</tr>
<tr>
<td>QPSK 0.493 (ULL)</td>
<td>4.8 kbps to 2.958 Mbps</td>
</tr>
<tr>
<td>QPSK 0.654 (ULL)</td>
<td>6.3 kbps to 3.923 Mbps</td>
</tr>
<tr>
<td>QPSK 0.734 (ULL)</td>
<td>7.0 kbps to 4.405 Mbps</td>
</tr>
<tr>
<td>VersaFEC Ultra Low Latency (ULL) Codes</td>
<td></td>
</tr>
<tr>
<td>BPSK 1/2</td>
<td>2.4 kbps to 1.500 Mbps</td>
</tr>
<tr>
<td>BPSK 1/2</td>
<td>4.8 kbps to 3.000 Mbps</td>
</tr>
<tr>
<td>QPSK 1/2</td>
<td>7.2 kbps to 4.500 Mbps</td>
</tr>
<tr>
<td>QPSK 1/2</td>
<td>8.4 kbps to 5.250 Mbps</td>
</tr>
<tr>
<td>QPSK 1/2</td>
<td>9.1 kbps to 5.666 Mbps</td>
</tr>
<tr>
<td>QPSK 1/2</td>
<td>10.8 kbps to 6.750 Mbps</td>
</tr>
<tr>
<td>QPSK 1/2</td>
<td>13.6 kbps to 7.875 Mbps</td>
</tr>
<tr>
<td>QPSK 1/2</td>
<td>15.3 kbps to 8.500 Mbps</td>
</tr>
<tr>
<td>QPSK 3/4</td>
<td>14.4 kbps to 9.000 Mbps</td>
</tr>
<tr>
<td>QPSK 3/4</td>
<td>16-QAM 3/4</td>
</tr>
<tr>
<td>QPSK 3/4</td>
<td>16-QAM 6/8</td>
</tr>
<tr>
<td>QPSK 3/4</td>
<td>16-QAM 7/8</td>
</tr>
</tbody>
</table>

Viterbi	2.4 kbps to 1.500 Mbps
BPSK 1/2	4.8 kbps to 3.000 Mbps
QPSK 3/4	7.2 kbps to 4.500 Mbps
QPSK 7/8	8.4 kbps to 5.250 Mbps
Viterbi + Reed Solomon	2.4 kbps to 1.363 Mbps
BPSK 1/2	4.3 kbps to 2.727 Mbps
QPSK 3/4	6.5 kbps to 4.090 Mbps
QPSK 7/8	7.5 kbps to 4.666 Mbps
QPSK 3/4	13.0 kbps to 4.000 Mbps
QPSK 7/8	16-QAM 7/8

TCM + Reed Solomon	8.7 kbps to 4.400 Mbps
TCM + Reed Solomon	8.7 kbps to 4.400 Mbps
Closed network	Uncoded BPSK
Unencoded	Uncoded QPSK/QPSK

Note: Data rate specifications reflect CDM-570A/L or CDM-570A/L-IP modem operating in non-Vipersat mode.
Scrambling: Mode dependent – ITU V.35, or proprietary externally synchronized.

Input/Output Impedance:
- CDM-570A: matched for 50/75 Ω, 17 dB minimum return loss, BNC connector
- CDM-570AL: transmit and receive 50 Ω, > 17 dB (950 MHz to 2250 MHz) and > 19 dB (1000 MHz to 1900 MHz) minimum return loss, female Type N connector

External Reference Input: 1, 2, 5, or 10 MHz, BNC connector

Form C Relays: TX, RX traffic alarms and unit faults

Modulator:
- CDM-570A
 - Frequency Stability (With Internal Reference): ±1 ppm, 0˚ to 50˚C (32˚ to 122˚F)
 - Output Power: 0 to -25 dBm, 0.1 dB steps
 - Accuracy: ±0.5 dB over frequency and temperature
 - Phase Noise: <0.75 degrees RMS double-sided, 100 Hz to 1 MHz
 - Output Spectrum/Filtering: Meets IESS-308-309 power spectral mask
- CDM-570AL
 - Frequency Stability (With Internal Reference): ±0.06 ppm, 0˚ to 50˚C (32˚ to 122˚F)
 - Output Power: 0 to -40 dBm, 0.1 dB steps
 - Accuracy: ±1.0 dB over frequency and temperature
 - Phase Noise: <1.2 degrees RMS double-sided, 100 Hz to 1 MHz

Demodulator:
- CDM-570A
 - Input Power Range: -30 to -60 dBm
 - Max Composite Level: +35 dBc, up to -5 dBm absolute max.
 - Acquisition Range: ±1 to ±32 kHz, 1 kHz step
 - Acquisition Time: Highly dependent on data rate, FEC rate, and demodulator acquisition range. Example: 120 ms average at 64 kbps, Viterbi Rate 1/2 QPSK, ±10 kHz acquisition sweep range, 6 dB Eb/No
- CDM-570AL
 - Input Power Range: -130 to +10 log symbol rate, dBm (minimum)
 - Max Composite Level: -90 to +10 log symbol rate, dBm (maximum)
 - Acquisition Range: ±1 to ±32 kHz, 1 kHz step
 - Acquisition Time: ±1 to ±200 kHz, 1 kHz step, symbol rate ≤ 625 kbps

Networking Protocols (With optional IP Module)
- RFC 768 – UDP
- RFC 959 – FTP
- RFC 2578 – SMIP
- RFC 791 – IP
- RFC 1112 – IP Multicast
- RFC 2597 – AF PHB
- RFC 792 – ICMP
- RFC 1213 – SNMP MIB II
- RFC 2598 – Exp Forwarding
- RFC 793 – TCP
- RFC 1812 – IPv4 Routers
- RFC 2616 – HTTP
- RFC 826 – ARP
- RFC 2045 – MIME
- RFC 2821 – SMTP
- RFC 856 – Telnet
- RFC 2226 – IGMP v2
- RFC 3412 – SNIP
- RFC 882 – Ping
- RFC 2474 – DiffServ
- RFC 3416 – SNMPv2
- RFC 894 – IP
- RFC 2475 – DiffServ
- RFC 3418 – SNMP MIB

Low-Noise Block Converter (LNB) Support (CDM-570AL)
- LNB Voltage: Selectable OFF, 13 VDC or 18 VDC
- LNB Reference: 10 MHz via RX center conductor, Selectable ON/OFF
 - 0.0 dBm ± 5 dB

Block Up Converter (BUC) Support (CDM-570AL)
- BUC Voltage: 24 VDC, 90 W @ 50˚C, 100 W @ 30˚C
- Power Supply: 100 to 240 VAC, 50/60 Hz to 400 MHz (IF)
- Power Consumption:
 - CDM-570A: 29 W typical (CDM-570AL: 29 W typical (w/o IP module), BUC, w/o IP module)
 - Weight: CDM-570A: 6.3 lbs (2.86 kg) (w/o IP Module)
 - Dimensions:
 - CDM-570A: 17.5” x 19” x 13”
 - (4.4 x 48.3 x 33 cm)
 - CDM-570AL: 17.5” x 19” x 16”
 - (4.4 x 48.3 x 40.6 cm)

Operations & Maintenance
- Configuration and Management:
 - Front panel: Remote port – EIA-232 or EIA-485 (2- or 4-wire)
 - Web interface: Telnet, w/ or w/o IP module
- Supported Protocols:
 - Networking Protocols: RFC 856, RFC 826, RFC 792, RFC 791, RFC 780, RFC 775
 - Voice Protocols: RFC 2553, RFC 2551, RFC 2550
 - Video Protocols: RFC 2557, RFC 2556, RFC 2555
 - Data Protocols: RFC 2554, RFC 2553, RFC 2552
 - Security Protocols: RFC 2551, RFC 2550

Security
- Password protection for web, ftp and telnet
- Access list

Accessories
- CDM-170A: 1.1 Modern Redundancy IF Switch
- CDM-180: 1.1 Modern Redundancy IF Switch
- CDM-280: 1.1 Modern Redundancy IF Switch Module
- CDM-300L: 1.1 Mod Redundancy Switch Module

Available Options
- How Enabled: Option
- Hardware: Power supply, AC input
- Hardware: Power supply, -24 VDC input
- Hardware: -48 VDC input
- Hardware: 24 VDC, 90 W @ 50˚C (100 W @ 30˚C) BUC power supply, AC input, -24 or -48 VDC input
- Hardware: 48 VDC, 150 W @ 50˚C (180 W @ 30˚C) BUC power supply, AC input or -48 VDC input
- Hardware: DoubleTalkCarrier-in-Carrier board
- Hardware: Turbo Codec board
 - (Required for Rate 0.95, Rate 5/16, 21/44, 3/4 and 7/8 can be supported with or without the TPC board)
- Hardware: Packet Processor

Environmental & Physical
- Temperature:
 - Operating: 0 to 50˚C (32 to 122˚F)
 - Storage: -40 to 85˚C (-40 to 185˚F)
- Humidity:
 - 95% maximum, non-condensing
- Power Supply:
 - 100 to 240 VAC, 50/60 Hz
 - 24 VDC (HW option)
 - 48 VDC (HW option)
- Power Consumption:
 - CDM-570A: 29 W typical (CDM-570AL: 29 W typical (w/o IP module), BUC, w/o IP module)

Doppler Buffer
- ±128, 256, 512, 1024, 2048, 4096, 8192, 16384 or 32768 bits
- Receive Clock Options
- Buffer disabled (RX satellite), buffer enabled (symmetric or asymmetric operation) (data interface dependent)
- Clock Tracking
 - ±100 ppm minimum
- Monitor Functions
 - E\textsubscript{F0}/N\textsubscript{0}, frequency offset, BER, buffer fill status, RX signal level

DoubleTalk Carrier-In-Carrier
- Delay Range: 0 to 300 ms
- Power Spectral Density Ratio (Interferer to Desired)
 - Maximum Symbol Rate Ratio: 3:1 (TX/RX or RXTX)
- Eb/No Degradation
 - 0 dB Power Spectral Density Ratio
 - 8 QAM: 0.4 dB
 - 16 QAM: 0.6 dB
 - Additional: 0.3 dB
- Satellite Restrictions
 - Satellite in “loop-back” mode (i.e., the transmit station can receive itself)
 - “Non-processing” satellite (i.e., does not demodulate or remodulate the signal)
Hardware

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VersaFEC-2 Codec board</td>
<td>Fast Modem data rate to 1.1 Mbps for CCM operation</td>
</tr>
<tr>
<td>FAST</td>
<td>Fast Modem data rate to 2.5 Mbps for CCM operation</td>
</tr>
<tr>
<td>FAST</td>
<td>Fast Modem data rate to 5 Mbps for CCM operation</td>
</tr>
<tr>
<td>FAST</td>
<td>Fast Modem data rate to 10.239 Mbps for CCM operation (Maximal data rate limited to 9.98 Mbps in CDM-570 Compatibility/Legacy mode. Maximum data rate limited to 9.98 Mbps when using TPC codec, 5.25 Mbps when using Viterbi, 4.666 Mbps when using Viterbi+RS, 4.4 Mbps when using TCM+RS)</td>
</tr>
<tr>
<td>FAST</td>
<td>8PSK, 8-QAM modulation (8PSK requires TPC codec or Reed-Solomon, 8QAM Requires VersaFEC codec or TPC codec)</td>
</tr>
<tr>
<td>FAST</td>
<td>16-QAM modulation (16-QAM requires VersaFEC codec or TPC codec or Reed Solomon)</td>
</tr>
<tr>
<td>FAST</td>
<td>IP ACM Symbol Rate – 375 kbps, 750 kbps, 1.5 Mbps, 2 Mbps or 3 Mbps (Requires Packet Processor and VersaFEC or VersaFEC-2)</td>
</tr>
<tr>
<td>FAST</td>
<td>Optimized Transmit Filter Rolloffs (5%, 10%, 15%, 20% and 25%) – 512 kbps, 1.1 Mbps, 2.5 Mbps, 5 Mbps or 10.239 Mbps</td>
</tr>
<tr>
<td>FAST</td>
<td>VersaFEC Codec Data rate (CCM) – 512 kbps, 1.1 Mbps, 2.5 Mbps, 5 Mbps or 10.239 Mbps</td>
</tr>
<tr>
<td>FAST</td>
<td>TPC Codec (CCM) for Rate 5/16, 21/44, 3/4 and 7/8 (Rate 5/16, 21/44, 3/4 and 7/8 can be supported with or without the TPC board) Not required if TPC board is present.</td>
</tr>
</tbody>
</table>

FAST

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoubleTalk Carrier in-Carrier Data Rate (full) – 512 kbps, 1.1 Mbps, 2.5 Mbps, 5 Mbps, 10.239 Mbps (Requires DoubleTalk Carrier in-Carrier board)</td>
<td></td>
</tr>
<tr>
<td>DoubleTalk Carrier in-Carrier Data Rate (fractional) – 2.5 Mbps, 5 Mbps, 10.239 Mbps (Requires DoubleTalk Carrier in-Carrier board)</td>
<td></td>
</tr>
<tr>
<td>DoubleTalk Carrier in-Carrier Automatic Power Control (CnC APC) (Requires DoubleTalk Carrier in-Carrier)</td>
<td></td>
</tr>
<tr>
<td>Reed Solomon Codec</td>
<td>Fast</td>
</tr>
<tr>
<td>CarrierID</td>
<td>Fast</td>
</tr>
<tr>
<td>Packet Processor Options</td>
<td>Fast</td>
</tr>
</tbody>
</table>

Regulatory

CE Mark

<table>
<thead>
<tr>
<th>Standard</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 301 489-1 (ERM)</td>
<td>Fast Modem data rate to 1.1 Mbps, 2.5 Mbps, 5 Mbps, 10.239 Mbps (Requires DoubleTalk Carrier in-Carrier board)</td>
</tr>
<tr>
<td>EN 55022</td>
<td>Fast Modem data rate to 5 Mbps, 10.239 Mbps (Requires DoubleTalk Carrier in-Carrier board)</td>
</tr>
<tr>
<td>EN 61000-3-2</td>
<td>Fast Modem data rate to 5 Mbps, 10.239 Mbps (Requires DoubleTalk Carrier in-Carrier board)</td>
</tr>
<tr>
<td>EN 61000-3-3</td>
<td>Fast Modem data rate to 5 Mbps, 10.239 Mbps (Requires DoubleTalk Carrier in-Carrier board)</td>
</tr>
</tbody>
</table>

FCC

<table>
<thead>
<tr>
<th>Standard</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCC Part 15, Subpart B</td>
<td>Fast Modem data rate to 1.1 Mbps, 2.5 Mbps, 5 Mbps, 10.239 Mbps (Requires DoubleTalk Carrier in-Carrier board)</td>
</tr>
</tbody>
</table>

SatelliteDish.com 954-941-8883